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Recent Advances in Space-Variant Deblurring
and Image Stabilization

Michal Šorel∗,1, Filip Šroubek∗ and Jan Flusser∗

Abstract The blur caused by camera motion is a serious problem in many areas of
optical imaging such as remote sensing, aerial reconnaissance or digital photogra-
phy. As a rule, this problem occurs when low ambient light conditions prevent an
imaging system from using sufficiently short exposure times, resulting in a blurred
image due to the relative motion between a scene and the imaging system. For exam-
ple, the cameras attached to airplanes and helicopters are blurred by the forward
motion of the aircraft and vibrations. Similarly when taking photographs by hand
under dim lighting conditions, camera shake leads to objectionable blur. Producers
of imaging systems introduce compensation mechanisms such as gyroscope gim-
bals in the case of aerial sensing or optical image stabilization systems in the case
of digital cameras. These solutions partially remove the blur at the expense of higher
cost, weight and energy consumption. Recent advances in image processing make it
possible to remove the blur in software. This chapter reviews the image processing
techniques we can use for this purpose, discusses the achievable performance and
presents some promising results achieved by the authors.

Keywords: Camera shake, image stabilization, image registration, space-variant
restoration, deblurring, blind deconvolution, point spread function, regularization

1 Introduction

The blur caused by sensor motion is a serious problem in a large number of applica-
tions from remote sensing to landmine detection to amateur photography. In general,
this problem occurs if the time needed to capture an image is so long that the imag-
ing system moves relative to the scene.
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An example application in landmine detection is the general survey of minefields
in the aftermath of military conflicts using visible light or infrared cameras. The
cameras attached to airplanes and helicopters are blurred by the forward motion
of the aircraft and vibrations. While the vibrations can be dumped to some extent
using gyroscope stabilizers, there is no simple way to do the same with the forward
movement. A similar problem arises in the case of cameras attached to moving
vehicles. For example, thermal infrared cameras attached to armoured vehicles can
be used to detect anti-personnel and anti-tank mines on roads and tracks.

Similarly, when taking photographs under low light conditions, the camera needs
a long exposure time to gather enough light to form the image, which leads to objec-
tionable blur. To mitigate this problem, producers of digital cameras introduced two
types of hardware solutions. The technically simpler one is to increase the sensitiv-
ity of a camera (ISO) by amplifying the signal from the sensor, which permits faster
shutter speed. Unfortunately, especially in the case of compacts, this results in a
decrease of image quality because of more noise. Optical image stabilization (OIS)
systems, containing either a moving image sensor or an optical element to counter-
act camera motion, are technologically more demanding. They help to remove blur
without increasing noise level but at the expense of higher cost, weight and energy
consumption.

A system removing the blur in software would be an elegant solution to the prob-
lem. In this chapter we give an overview to possible approaches to this problem.
The algorithms are explained in connection with photography but the results can be
applied to other cases such as aerial reconnaissance and infrared imaging as well.

We start with an outline of approaches. Then, in Section 3 we describe a math-
ematical model of blurring. For each approach (Sections 4–7), we summarize its
strong and weak points and present a typical state-of-the-art method. Section 8 sum-
marizes results and indicates the potential of individual approaches.

2 Overview of Approaches

An obvious way to avoid camera motion blur is to take a sequence of underexposed
images so that the exposure time is short enough to prevent blurring. After regis-
tration, the whole sequence can be summed to get the original sharp image with a
reasonable noise level. In Section 4 we briefly discuss why this idea turns out to be
impractical for more than a few images. In the rest of this chapter, we discuss situa-
tions where we already have a blurred image (or a sequence of images) and wish to
remove the blur.

To simplify the problem, the blur is usually assumed to be homogenous in the
whole image. In this case the blur can be modeled by convolution. That is why
the reverse problem to find the sharp image is called deconvolution. If the PSF is
not known, which is the case in most real situations, the problem is called blind
deconvolution.
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While non-blind deconvolution problems can be easily solved, solutions of blind
deconvolution problems from a single image are highly ambiguous. To find a stable
solution some additional knowledge is required. This case is treated in Section 5.
The most common approach is regularization, applied both on the image and blur.
Regularization terms mathematically describe a priori knowledge and play the same
role as prior distributions in stochastic models. For the present, probably the best
published blind deconvolution methods are those of Fergus et al. [2] and coming
soon [9].

Another approach, extensively studied in past years, is to use multiple images
capturing the same scene but blurred in a different way (Section 6). The camera
takes two or more successive images and each exhibits different blurring due to the
basically random motion of the photographer’s hand or, for example, aircraft vibra-
tions. Multiple images permit estimation of the blurs without any prior knowledge
of their shape, which is hardly possible in single image blind deconvolution [10].

One particular multi-image setup attracted considerable attention only recently.
Taking images with two different exposure times (long and short) results in a pair of
images, in which one is sharp but underexposed and another is correctly exposed but
blurred. Instead of the underexposed image we can equivalently take an image with
high ISO. Both can be easily achieved in continuous shooting mode by exposure
and ISO bracketing functions of DSLR cameras. For Canon compact cameras these
functions can be written in the scripting language implemented within the scope of
the CHDK project (http://chdk.wikia.com/wiki/CHDK).

To estimate the sharp image, two different ideas were proposed in the literature.
The first adjusts the contrast of the underexposed image to match the histogram
of the blurred one [7]. However, this technique is applicable only if the difference
between exposure times is small. The second way [5, 11] uses the image pair to
estimate the blur and then deconvolves the blurred image. This path was followed by
[15], where the authors show an effective way to suppress ringing artifacts produced
by Richardson-Lucy deconvolution. In Section 7 we give an example of an algorithm
of this type proposed by the authors of this chapter. To be applicable even for wide
angle lenses, we consider space-variant blur.

3 Blur Model

It is well known that homogenous blurring can be described by convolution

z = u∗h [x,y] =
∫

u(x− s,y− t)h(s, t) dsdt, (1)

where u is an original image, h is called the convolution kernel or point-spread
function (PSF) and z is the blurred image. In our case of camera motion blur the
PSF is a plane curve given by an apparent motion of each pixel during the exposure.

If the focal length of the lens is short or camera motion contains a significant
rotational component about the optical axis, this simple model is not valid. The blur
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is then different in different parts of the image and is a complex function of camera
motion and depth of scene [14]. We can see an example in Figure 5, where the
image was divided into 49 (7×7) rectangles and convolution kernels were estimated
within these subimages (by a method described in Section 7). Notice for example
the difference between the upper left and right kernels.

Nevertheless, this spatially varying blur can be described by a more general linear
operation

z = u∗v h [x,y] =
∫

u(x− s,y− t)h(x− s,y− t;s, t) dsdt, (2)

where h is again called the point-spread function as in the case of convolution. Note
that convolution is a special case, with the function h independent of coordinates x
and y, that is h(x,y;s, t) = h(s, t). We can look at (2) as convolution with a kernel that
changes with its position in the image, and speak about space-variant convolution.
The subscript v distinguishes from ordinary space-invariant convolution, denoted by
asterisk.

Because the rotational component of camera motion is usually dominant, the blur
is independent of depth and the PSF changes in a continuous gradual way. Therefore
the blur can be considered locally constant and can be locally approximated by
convolution. This property can be used to efficiently estimate even the space-variant
PSF, as described in Section 7.

4 Summing of Underexposed Images

At first sight, the idea to sum a sequence of underexposed images seems to be very
attractive. It is a well known property of shot (Poisson) noise that an image taken
with an exposure time t has the same level of noise as the sum of N images each
taken with time t/N. So, apparently, the only problem we must solve is to register
images with sufficient precision. There exist many fast image registration methods
and, without doubt, one of them could be used in this case. Registration is made
easier also by the fact that the difference between images is not large as the images
are taken quickly one after another.

Unfortunately, for the present, there is a serious problem that limits the use of this
idea in practice. Images taken by present day digital cameras are huge and it takes
a lot of time to read them out from sensor to camera memory. For consumer level
DSLRs it typically takes about 1/3 of second, for compacts even more. For example,
imagine that we want to replace one 1/4 s image by a sequence of 16 images taken
with exposure time 1/60 s, which corresponds to the use of ISO 1,600 instead of
ISO 100. Now the camera needs 16× 1/3, or more than 5 s. For many situations
this is simply too long.

To summarize, on one hand this approach is computationally simple and can
potentially be implemented inside a camera. On the other hand, to be useful
for really low lighting conditions, the read-out time will have to be significantly
shortened.
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In the rest of this chapter we will treat blurred images, which is less demanding
with respect to read-out time and can actually be used with present day cameras. On
the other hand, deblurring is computationally more time consuming and assumes
postprocessing on the photographer’s personal computer.

5 Single-Image Blind Deconvolution

There has been a considerable effort in the image processing community in the last
three decades to find a reliable algorithm for single image blind deconvolution. For
a long time, the problem seemed too difficult to be solved for complex blur kernels.
Proposed algorithms usually worked only for special cases such as astronomical
images with uniform (black) background. There was no reliable result applicable to
natural scenes.

Only recently, in 2006, Rob Fergus et al. [2] proposed an interesting Bayesian
method with very impressive results. Another method of this kind should appear
at SIGGRAPH 2008 [9]. The authors claim even better results than [2] with much
simpler and faster computation. In this chapter we briefly describe the method [2].

The method assumes a simple convolution model of blurring

z = u∗h+n, (3)

where n is an independent Gaussian zero mean noise.
The basic idea is to estimate the a posteriori probability distribution of the gra-

dient of the original image and of the blur kernel

p(u,∇∇∇h|∇∇∇z) = p(∇∇∇z|∇∇∇u,h)p(∇∇∇u)p(h), (4)

using knowledge of independent prior distributions of the image gradient p(∇∇∇u) and
of the kernel p(h). The likelihood p(∇∇∇z|∇∇∇u,h) is considered Gaussian with mean
∇∇∇u ∗h and an unknown variance. After estimation of the full posterior distribution
p(u,∇∇∇h|∇∇∇z), it computes the kernel with maximal marginal probability. Finally, the
original image is restored by the classical Richardson-Lucy algorithm. This final
phase could obviously be replaced by an arbitrary non-blind deconvolution method.

The algorithm is quite complex. It approximates the full posterior distribution
by the product p(u|∇∇∇z)p(∇∇∇h|∇∇∇z) in the sense of Kullback-Leibler distance, which
can be efficiently computed by the variational scheme described in [6] for cartoon
images. The image gradient prior is considered in the form of a Gaussian mixture.
In a similar way, the prior on kernel values is expressed as a mixture of exponential
distributions, which reflects the fact that most kernel values for motion blur are zero.
Both types of priors are learned from a typical natural image.

Figure 1 shows an example of an image restored by this method. We can see that
the convolution kernel is recovered surprisingly well. Some artifacts appear because
there are no smoothing constraints in the algorithm. Another problem is the high
number of artifacts produced by non-blind deconvolution in the final phase of the
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(a) Blurred image, 800×600 pixels (b) Deblurred image

(c) Estimated PSF, 35×35 elements

Fig. 1 Example results of single-image blind deconvolution provided by Fergus et al. [2].

algorithm. A typical example is the well known ringing effect. New papers [9,15,16]
seem to deal with this problem successfully.

Bringing this all together, there are reliable methods for estimating the blur kernel
and subsequent restoration from a single blurred image. The main problem is the
need for user assistance to choose a suitable part of the image for kernel inference.

6 Multi-image Blind Deconvolution

In this approach we use multiple images (Fig. 2a) capturing the same scene but
blurred in a different way. We can easily take such a sequence using continuous
shooting modes of present day cameras. Multiple images permit one to estimate the
blurs (Fig. 3) without any prior knowledge of their shape.
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(a) Blurred input images, 1024×768 pixels

(b) Deconvolution from only first image (c) Result of multi-image deconvolution

Fig. 2 Example results achieved by multi image blind deconvolution algorithm [10].

Fig. 3 Convolution kernels corresponding to images in Figure 2a.

Mathematically, the situation is described as convolution of the original image u
with P convolution kernels hp

zp = u∗hp +np, p = 1, ..,P. (5)



Author's personal copy
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In this section, we describe one of the best working multi-image deblurring algo-
rithms [10].

As in the single image situation, the algorithm can be viewed as a MAP (maxi-
mum a posteriori) estimate of distributions of the sharp image and the blur kernels.
It is equivalent to minimization of the functional

E(u,h1, ...,hp) =
1
2

P

∑
p=1

‖u∗hp − zp‖2 +λuQ(u)+λh∑
i �= j

R(hi,h j) (6)

with respect to the latent image u and blur kernels h1, ...,hp. The first term of (6),
called the error term, is a measure of the difference between input blurred images
zp and the original image u blurred by kernels hk. The size of the difference is
measured by the L2 norm ‖.‖. The inner part of the error term is nothing more than
the matrix of errors at the individual points of image p, which should be close to
zero for the correct image and kernel. Note that kernels hp incorporate a possible
shift of the camera between the images.

The role of regularization terms

Q(u) =
∫

|∇∇∇u| (7)

and
R(hi,h j) = ‖z j ∗hi − zi ∗h j‖ (8)

is to make the problem well-posed and incorporate prior knowledge about the solu-
tion [12].

Thus, Q(u) is an image regularization term which can be chosen to properly rep-
resent the expected character of the image function. For the majority of images a
good choice is total variation (7), where ∇∇∇u denotes the gradient of u. The size of
the gradient is integrated over the whole area of the image. Very good anisotropic
denoising properties of the total variation were shown by Rudin et al. [8]. A rea-
son why total variation works so well for real images is that it favors piecewise
constant functions. In real images object edges create sharp steps that appear as
discontinuities in the intensity function. For a more detailed discussion of image
regularization, see [1, 10, 13]. The kernel regularization term is a constraint useful
for kernels of limited support.

The functional (6) is minimized by alternating minimization in the subspaces
corresponding to the image and the blur kernels.

The main problem of the multi-image approach is speed. For this reason, it is
practically impossible to generalize this approach to space-variant blur. As a result,
this approach can be applied mainly for tele-lens photos if the rotational component
of camera motion about the optical axis is negligible. In general, it usually works
for the central section of an arbitrary blurred image.
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7 Restoration from a Pair of Blurred and Noisy Images

The idea to use two images with two different exposure times appeared only recently
[5, 11, 15]. Most algorithms of this group first estimate the blur from the image pair
and then deconvolve the blurred image. The main problem of the deconvolution
phase is suppression of ringing artifacts. A method of handling this problem for the
Richardson-Lucy algorithm was proposed in [15, 16].

None of the aforementioned methods are general enough to be applicable to full
uncropped photos. The reason is that the blur is not constant throughout the image,
especially in the case of lenses with shorter focal length (<50 mm). In addition, it
often happens that camera motion has a considerable rotational component about the
optical axis and then the blur is space-variant, even for tele-lenses. Another effect
modifying blurs is lens distortion. All these effects are accentuated in regions close
to image borders. Therefore a space-variant approach is necessary for artifact-free
results.

Space-variant restoration was already considered in astronomy and microscopy
but there is almost no work applicable in photography. Only recently, in [14],
is space-variant blur considered for a camera moving without rotation, but this
assumption does not correspond to the real trajectory of a handheld camera.

In the following paragraphs we describe a state-of-the-art algorithm proposed
by the authors. To avoid ringing effects we use a constrained least squares method
with total variation regularization. To be applicable even for wide angle lenses, we
consider space-variant blur.

7.1 Algorithm

For input the algorithm requires a pair of images, one of them blurred and another
noisy but sharp. The algorithm works in three phases:

1. Robust image registration
2. Estimation of convolution kernels on a grid of windows followed by an adjust-

ment at places where estimation failed
3. Restoration of the sharp image

In the first step, we need a robust registration procedure working with precision
significantly better than the considered size of blur kernels. We can assume that
the change of camera position is negligible with respect to scene distance (very
short baseline) and consequently it can be approximated by a projective transform
independent of scene depth. Experiments have also shown that misalignments due to
lens distortion do not harm the algorithm because they are compensated by the shift
of the corresponding part of the space-variant PSF. For the purpose of this algorithm,
we apply the standard RANSAC [3,4] approach to estimate the homography matrix.
Then we transform the blurred image accordingly. The transformed image will be
denoted by zT .
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In the second step of the algorithm we make use of the fact that the blur can
be locally approximated by convolution. We do not estimate the blur kernels in all
pixels. Instead, we divide the image into rectangular windows (a 7× 7 grid in our
example in Figure 6) and estimate only a small set of kernels hi, j (i, j = 1.7 in our
example in Figure 5). The estimated kernels are assigned to centers of the windows
where they were computed. In the rest of the image, the PSF h is approximated by
bilinear interpolation from blur kernels in four adjacent windows.

Thus, we estimate blur kernels on a grid of windows, where the blur can be
approximated by convolution

zT
i, j = (ui, j −ni, j)∗hi, j = ui, j ∗hi, j −ni, j ∗hi, j, (9)

where zT
i, j is a section of the transformed blurred image zT , ui, j the corresponding

part of the noisy image, hi, j the locally valid convolution kernel and ni, j an indepen-
dent Gaussian noise contained in the noisy image.

We estimate the solution of this problem in a least squares sense as

hi, j = argmin
k

‖ui, j ∗k− zT
i, j‖2 +α‖∇k‖2, k(s, t) ≥ 0, (10)

where hi, j(s, t) is an estimate of h(x0,y0,s, t), (x0,y0) being the center of the current
window zi, j, and ‖.‖ is the L2 norm. Regularization helps reduce the noise arising
from the imprecise model.

The kernel estimation procedure (10) can fail. Such kernels must be identified,
removed and replaced by the average of adjacent (valid) kernels. There are basically
two reasons why kernel estimation fails. Therefore we need two different measures
to decide which kernel is wrong. To identify textureless regions we compute entropy
of the kernels and take those with entropy above some threshold. The other, more
serious case of failure is pixel saturation, that is pixel values above the sensor range.
This situation can be identified by computing the sum of kernel values, which should
be close to one for valid kernels. Therefore, we simply remove kernels whose sum
is too different from unity, again above some threshold.

For the restoration step, we use an energy minimization approach with total vari-
ation as an image regularization term, which belongs to the category of constrained
least squares estimators [14]. Notice that it has the same form as (6). Total variation
behaves satisfactorily for most photographs since it removes noise efficiently while
not oversmoothing edges. It also helps to some extent to suppress artifacts caused
by pixel saturation.

The restoration phase of the proposed algorithm can be described as minimiza-
tion of the functional

E(u) =
1
2
‖u∗v h− z‖2 +λ

∫
|∇∇∇u| (11)

with respect to the unknown sharp image u, where the second term is the total vari-
ation of the image.
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Its derivative can be written as

∂E(u) = (u∗v h− z)�v h−λ div
(
∇∇∇u
|∇∇∇u|

)
, (12)

where �v is the operator adjoint to space-variant convolution

u�v h [x,y] =
∫

u(x− s,y− t)h(x,y;−s,−t) dsdt. (13)

To minimize functional (11) we used a half-quadratic iterative approach, reduc-
ing this problem to a sequence of linear subproblems [14].

Alternatively, to speed up the restoration step, we could use a variant of the
Richardson-Lucy algorithm, similar to methods [15,16]. Figures 4–6 show an exam-
ple of a real image restored by this method.

In our opinion, this is the best of the three deblurring approaches. It is quite fast
and reliable. Because of its stability it can be used to estimate the space-variant PSF,
which makes it more applicable for a much larger range of situations. Another plus
is that it can be used to segment moving objects, which is hardly possible from one
image.

Fig. 4 Image of a shopping center taken in an evening with shutter speed 1/2 s (left), results of
our algorithm with PSF adjustment (right). Close-ups are shown in Figure 6.

Fig. 5 Fourty-nine convolution kernels estimated in the shopping center image (left). Notice the
wrong kernels at places of low-contrast texture (upper left corner) and pixel saturation (lights
inside the building). Adjusted kernels on the right.
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Fig. 6 Details of the shopping center image. From left to right – the blurred image, noisy image,
result of deconvolution and our result.

8 Summary

In this chapter, we reviewed approaches to software image stabilization in the sense
of removing blur caused by camera motion (Table 1).

The first possibility is to avoid blur from the beginning by taking a sequence
of underexposed images. This idea is impractical because of the time needed for
sensor read-out. We followed with the description of a deblurring algorithm from a
single image. Although there are usable algorithms for this case, the main disadvan-
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Table 1 Summary of approaches to image stabilization.

Approach Speed Quality Main problem

Multiple underexposed images High High Slow read-out, pre-
cise registration

Single-image deconvolution Slow/medium Medium Homogenous blur
only

Multi-image deconvolution Slow Medium/high Slow computation
One blurred and one noisy image Medium Medium More artifacts than

multi-image decon-
volution

tages are speed and difficulties with the segmentation of moving objects. The third
approach was deconvolution from a sequence of blurred images. The main disad-
vantage of existing algorithms from this category is speed. They are even slower
than single image deconvolution methods.

The last and, in our opinion, most advantageous approach is to use a pair of
images, one blurred and one underexposed. Its main assets are relative speed, reli-
ability, ability to deal with space-variant blur and the potential to segment moving
objects.
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272 M. Šorel et al.

9. Qi Shan, J. Jia, and A. Agarwala. High-quality motion deblurring from a single image. ACM
Trans. Graphics (SIGGRAPH), 27(3) 2008.
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13. D. Tschumperlé and R. Deriche. Vector-valued image regularization with pdes: A common

framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell., 27(4):506–517,
2005.
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